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1. 

The differential quadrature method (henceforth DQM) seems to be a promising numerical
tool for analyzing differential equations with boundary and/or initial conditions.

At the early stage of the method, the satisfaction of the Neumann boundary conditions
in fourth order systems was rather intriguing, and the so-called d approach, as proposed
by Bert and coworkers (see, e.g., reference [1]), turned out to be approximate and not
completely reliable. Moreover, sometimes it produced badly conditioned matrices, with
consequent numerical inaccuracies. More recently, an improved method [2] allowed one
to satisfy exactly all the boundary conditions in a fourth order system, and a
straightforward generalization of this approach [3] somewhat simplified the analysis in the
presence of classical boundary conditions of the Dirichlet and Neumann type. Another,
powerful generalization should also be mentioned [4, 5].

In this letter, the DQM is applied to dynamic and stability analysis of beams with
non-classical boundary conditions, the obtained results are compared with the exact
frequencies and critical loads, and the agreement is shown to be quite satisfactory for the
entire parameter range.

2.   

Consider a beam with span L, Young modulus E, second moment of area I, mass density
r and cross-sectional area A. The beam ends are both elastically constrained against the
vertical displacements and rotations, with vertical flexibilities at left and right cvl , cvr ,
respectively, and rotational flexibilities crl , crr .

The equation of motion of the beam in the presence of an axial force F at the right end
can be written as

EI 14v/1x4 + (F− kp ) 12v/1x2 + kwv− rAv2v=0, (1)

where v(x) is the transverse displacement, the parameters kw and kp define a two-parameter
elastic soil, and v2 denotes the free vibration frequency of the beam.

The boundary conditions are

EI 13v/1x3=x=0 =−(1/cvl )v(0), EI 12v/1x2=x=0 = (1/crl ) 1v/1x=x=0,

EI 13v/1x3=x=L +(F− kp ) 1v/1x=x=L =(1/cvz )v(L),

EI 12v/1x2=x=L =−(1/crl ) 1v/1x=x=L . (2)
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It is convenient to map the physical domain [0, L] on to the natural Gaussian domain
[−1, 1], by means of the transformation

j(x)=2(x/L)−1, (3)

where x is the Cartesian co-ordinate and j its natural counterpart.
It follows that the differential equation becomes

14v(j)/1j4 + (l− kp ) 12v(j)/1j2 + kwv(j)−V2v(j)=0, (4)

where

l=FL2/4EI, kp = kpL2/4EI, kw = kwL4/16EI, V2 = rAv2L4/16EI. (5)

The non-dimensional boundary conditions are given by

13v/1j3=j=−1 =−(1/xvl )v(−1), 12v/1j2=j=−1 = (1/xrl ) 1v/1j=j=−1,

13v/1j3=j=1 + (l− kp ) 1v/1j=j=1 = (1/xvz )v(1), 12v/1j2=j=1 =−(1/xrl ) 1v/1j=j=1,

(6)

where the non-dimensional axial flexibilities and rotational flexibilities can be expressed
as

xvl =8EIcvl /L3, xrl =2EIcrl /L, xvz =8EIcvz /L3, xrr =2EIcrr /L. (7)

3.      

In order to discretize the differential equation of motion, the natural interval is divided
into n segments defined by means of n+1 points located at the abscissae j1, j2, . . . , jn+1.
One can assume the set of (n+7) nodal unknowns

dT = {u1, u'1 , u01 , u11 , u2, · · ·, un+1, u'n+1, u0n+1, u1n+1}, (8)

and the displacement v(j) of the beam can be approximated as

v(j)= aC= s
n+7

i=1

aiCi , (9)

where a is a row vector of monomials, and C is a column vector of Lagrangian
co-ordinates. From equation (9) it is easily seen that

v'(j)= a'C, v0(j)= a0C, v1(j)= a1C, (10)

and therefore
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Following the same approach as in reference [1], one can define the weighting coefficients
of the first four derivatives, as follows:

A=N'0N−1
0 , B=AA, C=AAA, D=AAAA. (12)

The discretized version of equation (4) is

L1,1 L1,2 · · · L1,n+7 v1 v1

L2,1 L2,2 · · · L2,n+7 v'1 v'1
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where the matrix L is the discretized version of the differential operator

L= 14/1j4 + (l− kp ) 12/1j2 + kw , (14)

and, as such is given by

Lij =Dij +(l− kp )Bij + kwdij , (15)

where dij is the well-known Kronecker operator.
In order to impose the boundary conditions, it is now convenient to interchange the rows

(and columns) (n+4) and (n+5) of the matrix L with the third and fourth rows
(and columns), so that the boundary conditions can be immediately imposed:

F J1 0 0 0 0 · · · 0 −xvl 0 0G G
0 1 0 0 0 · · · xrl 0 0 0G G

G G0 0 1 −xvz (l− kp ) 0 · · · 0 0 0 −xvz

G G0 0 0 1 0 · · · 0 0 xrr 0G G
G G
G GL5,1 L5,2 L5,n+4 L5,n+5 L5,5 · · · L5,3 L5,4 L5,n+6 L5,n+7

G G· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·G G
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Ln+7,1 Ln+7,2 Ln+7,n+4 Ln+7,n+5 Ln+7,5 · · · Ln+7,3 Ln+7,4 Ln+7,n+6 Ln+7,n+7f j
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In partitioned form, the previous equations can be written as

0Laa
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Lbb10wc

w1=V200
w1, (17)

where wc is the vector of the passive coordinates,
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The passive degrees of freedom can be easily condensed, and the following reduced
eigenvalue problem is obtained:

(Lbb −LbaL−1
aa Lab )w=V2w. (20)

It is perhaps worth noting that, in the absence of axial forces and elastic soil, no matrix
inversion is involved in the condensation process, because in this case the matrix Laa is
given by an identity matrix.

4.  

All computations for the numerical examples have been performed by using two
different choices of the monomials ai . In the first case ai = ji−1 and the sampling points
are uniformly distributed along the natural interval

ji =[2(i−1)− n]/n, i=1, 2, . . . , n+1. (21)

In the second case ai =Ti−1(j), where Ti (j) are the Chebyshev polynomials of the first
kind, and the sampling points are located at the so-called Gauss–Lobatto–Chebyshev
points,

ji =−cos(p(i−1)/n), i=1, 2, . . . , n+1. (22)

In Table 1 the first three nondimensional natural frequencies of vibration are reported,
in the absence of axial loads and elastic soils, for xvz =0, xrl =0, xrr =0, and for various
values of the non-dimensional vertical flexibility at left xvl . The results have been obtained
for n=8, and are compared with the exact results, which in this particular case could be
obtained by solving the frequency equation [6]. It is worth noting that the use of the
Chebyshev polynomials implies a greater precision, especially for the higher frequencies.
In any case, the agreement is quite satisfactory.
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T 1

First three non-dimensional frequencies of a beam with flexible ends

xvl V1 V2 V3

0 Uniform grid 22·37329 61·67194 120·85757
Chebyshev grid 22·37329 61·67436 120·82882
Exact 22·37329 61·67282 120·90339

0·001 Uniform grid 21·38780 53·11998 91·57713
Chebyshev grid 21·38780 53·12383 91·52081
Exact 21·38780 53·12356 91·51347

0·005 Uniform grid 17·75903 37·73705 77·64691
Chebyshev grid 17·75903 37·73758 77·60824
Exact 17·75901 37·73758 77·60118

0·01 Uniform grid 14·80957 33·89799 76·09249
Chebyshev grid 14·80957 33·89823 76·05848
Exact 14·80957 33·89823 76·05188

0·05 Uniform grid 8·884959 30·90089 74·94655
Chebyshev grid 8·884959 30·90100 74·91615
Exact 8·884959 30·90100 74·90992

0·1 Uniform grid 7·470370 30·55817 74·80982
Chebyshev grid 7·470370 30·55827 74·77985
Exact 7·470370 30·55827 74·77366

1 Uniform grid 5·813812 30·25851 74·68802
Chebyshev grid 5·813812 30·25860 74·65844
Exact 5·813812 30·25860 74·65230

10 Uniform grid 5·615816 30·22903 74·67590
Chebyshev grid 5·615817 30·22912 74·64637
Exact 5·615815 30·22912 74·64022

100 Uniform grid 5·595576 30·22608 74·67469
Chebyshev grid 5·595575 30·22617 74·64516
Exact 5·595575 30·22617 74·63902

In Table 2 the influence of the axial force on the free vibration frequency is illustrated
for a beam clamped at the left and simply supported at the right with a flexible support
(xvl =0·5). Even in this case n=8, whereas the support at the right is simulated by giving
the large value xrr =100 000 as the right rotational flexibility.

T 2

Free vibration frequencies versus axial load for a propped
cantilever beam with a flexible support

l V1, uniform grid V1, exact

0 4·49483 4·49482
1 3·96342 3·96342
2 3·30980 3·30980
3 2·42482 2·42482
4 0·63363 0·63364
4·05 0·33936 0·33937
4·07 0·01667 0·01680
4·070047 0·00279 0·00347
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The performances of the differential quadrature method are not influenced by the value
of the axial loads, which can reach its critical value without causing any numerical error.

5. 

The differential quadrature method has been applied to a class of one-dimensional
boundary problems in the presence of non-classical boundary conditions. It is shown that
the proposed approach satisfies exactly all the four boundary conditions, leading to a
simple eigenvalue problem.

A small Mathematica notebook [7] was written, in order to compare the appropriate
eigenvalues with the exact results, and some effort was made in order to minimize the
round-off errors. Finally, numerical examples and comparisons show the effectiveness of
the proposed method.



1. C. W. B and M. M 1996 Transactions of the American Society of Mechanical Engineers,
Applied Mechanics Reviews, 49(1), 1–28. Differential quadrature method in computational
mechanics: A review.

2. W. C, A. G. S and C. W. B 1997 International Journal for Numerical Methods in
Engineering 40, 1941–1956. A new approach to the differential quadrature method for
fourth-order equations.

3. M. A. D R and C. F Natural boundary conditions and DQM, to be published.
4. C. S and H. D 1997 International Journal of Solids and Structures 34(7), 819–835.

Implementation of clamped and simply supported boundary conditions in the GDQ free
vibration analysis of beams and plates.

5. C. S and H. D 1997 International Journal of Solids and Structures 34(7), 837–846. A
generalized approach for implementing general boundary conditions in the GDQ free vibration
analysis of plates.

6. M. A. D R, M. J. M and M. B. R 1998 SECTAM XIX, Florida Atlantic
University, 3–5 May. The dynamic behaviour of a pile on Pasternak soil subjected to tip axial
loads.

7. S. W 1991 Mathematica: A System for Doing Mathematics by Computer. Reading,
Massachusetts, Addison–Wesley; second edition.


