LETTERS TO THE EDITOR

NON-CLASSICAL BOUNDARY CONDITIONS AND DQM
M. A. De Rosa and C. Franciosi

Department of Structural Engineering, University of Basilicata, 85100-Potenza, Italy
(Received 15 August 1997)

1. INTRODUCTION

The differential quadrature method (henceforth DQM) seems to be a promising numerical tool for analyzing differential equations with boundary and/or initial conditions.

At the early stage of the method, the satisfaction of the Neumann boundary conditions in fourth order systems was rather intriguing, and the so-called δ approach, as proposed by Bert and coworkers (see, e.g., reference [1]), turned out to be approximate and not completely reliable. Moreover, sometimes it produced badly conditioned matrices, with consequent numerical inaccuracies. More recently, an improved method [2] allowed one to satisfy exactly all the boundary conditions in a fourth order system, and a straightforward generalization of this approach [3] somewhat simplified the analysis in the presence of classical boundary conditions of the Dirichlet and Neumann type. Another, powerful generalization should also be mentioned [4, 5].

In this letter, the DQM is applied to dynamic and stability analysis of beams with non-classical boundary conditions, the obtained results are compared with the exact frequencies and critical loads, and the agreement is shown to be quite satisfactory for the entire parameter range.

2. THE STRUCTURAL SYSTEM

Consider a beam with span L, Young modulus E, second moment of area I, mass density ρ and cross-sectional area A. The beam ends are both elastically constrained against the vertical displacements and rotations, with vertical flexibilities at left and right $c_{v l}, c_{v r}$, respectively, and rotational flexibilities $c_{r l}, c_{r r}$.

The equation of motion of the beam in the presence of an axial force F at the right end can be written as

$$
\begin{equation*}
E I \partial^{4} v / \partial x^{4}+\left(F-k_{p}\right) \partial^{2} v / \partial x^{2}+k_{w} v-\rho A \omega^{2} v=0 \tag{1}
\end{equation*}
$$

where $v(x)$ is the transverse displacement, the parameters k_{w} and k_{p} define a two-parameter elastic soil, and ω^{2} denotes the free vibration frequency of the beam.

The boundary conditions are

$$
\begin{gather*}
E I \partial^{3} v /\left.\partial x^{3}\right|_{x=0}=-\left(1 / c_{v l}\right) v(0), \quad E I \partial^{2} v /\left.\partial x^{2}\right|_{x=0}=\left(1 / c_{r l}\right) \partial v /\left.\partial x\right|_{x=0} \\
E I \partial^{3} v /\left.\partial x^{3}\right|_{x=L}+\left(F-k_{p}\right) \partial v /\left.\partial x\right|_{x=L}=\left(1 / c_{v z}\right) v(L) \\
E I \partial^{2} v /\left.\partial x^{2}\right|_{x=L}=-\left(1 / c_{r l}\right) \partial v /\left.\partial x\right|_{x=L} \tag{2}
\end{gather*}
$$

It is convenient to map the physical domain $[0, L]$ on to the natural Gaussian domain [$-1,1$], by means of the transformation

$$
\begin{equation*}
\xi(x)=2(x / L)-1 \tag{3}
\end{equation*}
$$

where x is the Cartesian co-ordinate and ξ its natural counterpart.
It follows that the differential equation becomes

$$
\begin{equation*}
\partial^{4} v(\xi) / \partial \xi^{4}+\left(\lambda-\kappa_{p}\right) \partial^{2} v(\xi) / \partial \xi^{2}+\kappa_{w} v(\xi)-\Omega^{2} v(\xi)=0 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=F L^{2} / 4 E I, \quad \kappa_{p}=k_{p} L^{2} / 4 E I, \quad \kappa_{w}=k_{w} L^{4} / 16 E I, \quad \Omega^{2}=\rho A \omega^{2} L^{4} / 16 E I \tag{5}
\end{equation*}
$$

The non-dimensional boundary conditions are given by

$$
\begin{gather*}
\partial^{3} v /\left.\partial \xi^{3}\right|_{\xi=-1}=-\left(1 / \chi_{v l}\right) v(-1), \quad \partial^{2} v /\left.\partial \xi^{2}\right|_{\xi=-1}=\left(1 / \chi_{r l}\right) \partial v /\left.\partial \xi\right|_{\xi=-1} \\
\partial^{3} v /\left.\partial \xi^{3}\right|_{\xi=1}+\left(\lambda-\kappa_{p}\right) \partial v /\left.\partial \xi\right|_{\xi=1}=\left(1 / \chi_{v z}\right) v(1), \quad \partial^{2} v /\left.\partial \xi^{2}\right|_{\xi=1}=-\left(1 / \chi_{r l}\right) \partial v /\left.\partial \xi\right|_{\xi=1} \tag{6}
\end{gather*}
$$

where the non-dimensional axial flexibilities and rotational flexibilities can be expressed as

$$
\begin{equation*}
\chi_{v l}=8 E I c_{v l} / L^{3}, \quad \chi_{r l}=2 E I c_{r l} / L, \quad \chi_{v z}=8 E I c_{v z} / L^{3}, \quad \chi_{r r}=2 E I c_{r r} / L \tag{7}
\end{equation*}
$$

3. A BRIEF OVERVIEW OF THE METHOD

In order to discretize the differential equation of motion, the natural interval is divided into n segments defined by means of $n+1$ points located at the abscissae $\xi_{1}, \xi_{2}, \ldots, \xi_{n+1}$. One can assume the set of $(n+7)$ nodal unknowns

$$
\mathbf{d}^{\mathrm{T}}=\left\{\begin{array}{llllllll}
u_{1}, & u_{1}^{\prime}, & u_{1}^{\prime \prime}, & u_{1}^{\prime \prime \prime}, & u_{2}, & \cdots, & u_{n+1}, & u_{n+1}^{\prime}, \tag{8}\\
u_{n+1}^{\prime \prime}, & u_{n+1}^{\prime \prime \prime}
\end{array}\right\},
$$

and the displacement $v(\xi)$ of the beam can be approximated as

$$
\begin{equation*}
v(\xi)=\alpha \mathbf{C}=\sum_{i=1}^{n+7} \alpha_{i} C_{i}, \tag{9}
\end{equation*}
$$

where $\boldsymbol{\alpha}$ is a row vector of monomials, and \mathbf{C} is a column vector of Lagrangian co-ordinates. From equation (9) it is easily seen that

$$
\begin{equation*}
v^{\prime}(\xi)=\boldsymbol{\alpha}^{\prime} \mathbf{C}, \quad v^{\prime \prime}(\xi)=\boldsymbol{\alpha}^{\prime \prime} \mathbf{C}, \quad v^{\prime \prime \prime}(\xi)=\boldsymbol{\alpha}^{\prime \prime \prime} \mathbf{C} \tag{10}
\end{equation*}
$$

and therefore

$$
\mathbf{d}=\left\{\begin{array}{c}
\alpha_{1} \tag{11}\\
\alpha_{1}^{\prime} \\
\alpha_{1}^{\prime \prime} \\
\alpha_{1}^{\prime \prime \prime} \\
\alpha_{2} \\
\vdots \\
\alpha_{n+1}^{\prime \prime \prime}
\end{array}\right\}=\mathbf{N}_{0} \mathbf{C}
$$

Following the same approach as in reference [1], one can define the weighting coefficients of the first four derivatives, as follows:

$$
\begin{equation*}
\mathbf{A}=\mathbf{N}_{0}^{\prime} \mathbf{N}_{0}^{-1}, \quad \mathbf{B}=\mathbf{A} \mathbf{A}, \quad \mathbf{C}=\mathbf{A} \mathbf{A} \mathbf{A}, \quad \mathbf{D}=\mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} . \tag{12}
\end{equation*}
$$

The discretized version of equation (4) is

$$
\left(\begin{array}{cccc}
L_{1,1} & L_{1,2} & \cdots & L_{1, n+7} \tag{13}\\
L_{2,1} & L_{2,2} & \cdots & L_{2, n+7} \\
L_{3,1} & L_{3,2} & \cdots & L_{3, n+7} \\
L_{4,1} & L_{4,2} & \cdots & L_{4, n+7} \\
\vdots & \vdots & \ddots & \vdots \\
L_{n+7,1} & L_{n+7,2} & \cdots & L_{n+7, n+7}
\end{array}\right) \quad\left[\begin{array}{c}
v_{1} \\
v_{1}^{\prime} \\
v_{1}^{\prime \prime} \\
v_{1 \prime \prime}^{\prime \prime \prime} \\
\vdots \\
v_{n+1}^{\prime \prime \prime}
\end{array}\right)=\Omega^{2} \quad\left[\begin{array}{c}
v_{1} \\
v_{1}^{\prime} \\
v_{1}^{\prime \prime} \\
v_{1 \prime \prime}^{\prime \prime \prime} \\
\vdots \\
v_{n+1}^{\prime \prime \prime}
\end{array}\right],
$$

where the matrix \mathbf{L} is the discretized version of the differential operator

$$
\begin{equation*}
\mathscr{L}=\partial^{4} / \partial \xi^{4}+\left(\lambda-\kappa_{p}\right) \partial^{2} / \partial \xi^{2}+\kappa_{w} \tag{14}
\end{equation*}
$$

and, as such is given by

$$
\begin{equation*}
L_{i j}=D_{i j}+\left(\lambda-\kappa_{p}\right) B_{i j}+\kappa_{w} \delta_{i j} \tag{15}
\end{equation*}
$$

where $\delta_{i j}$ is the well-known Kronecker operator.
In order to impose the boundary conditions, it is now convenient to interchange the rows (and columns) $(n+4)$ and $(n+5)$ of the matrix \mathbf{L} with the third and fourth rows (and columns), so that the boundary conditions can be immediately imposed:

$$
\begin{aligned}
& \left(\begin{array}{cccc|cccccc}
1 & 0 & 0 & 0 & 0 & \cdots & 0 & -\chi_{v l} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \cdots & \chi_{n l} & 0 & 0 & 0 \\
0 & 0 & 1 & -\chi_{v z}\left(\lambda-\kappa_{p}\right) & 0 & \cdots & 0 & 0 & 0 & -\chi_{v z} \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & \chi_{n r} & 0 \\
\hline L_{5,1} & L_{5,2} & L_{5, n+4} & L_{5, n+5} & L_{5,5} & \cdots & L_{5,3} & L_{5,4} & L_{5, n+6} & L_{5, n+7} \\
\cdots & \cdots \\
L_{3,1} & L_{3,2} & L_{3, n+4} & L_{3, n+5} & L_{3,5} & \cdots & L_{3,3} & L_{3,4} & L_{3, n+6} & L_{3, n+7} \\
L_{4,1} & L_{4,2} & L_{4, n+4} & L_{4, n+5} & L_{4,5} & \cdots & L_{4,3} & L_{4,4} & L_{4, n+6} & L_{4, n+7} \\
L_{n+6,1} & L_{n+6,2} & L_{n+6, n+4} & L_{n+6, n+5} & L_{n+6,5} & \cdots & L_{n+6,3} & L_{n+6,4} & L_{n+6, n+6} & L_{n+6, n+7} \\
L_{n+7,1} & L_{n+7,2} & L_{n+7, n+4} & L_{n+7, n+5} & L_{n+7,5} & \cdots & L_{n+7,3} & L_{n+7,4} & L_{n+7, n+6} & L_{n+7, n+7}
\end{array}\right) \\
& \times\left(\begin{array}{c}
v_{1} \\
v_{1}^{\prime \prime} \\
v_{n+1} \\
v_{n+1}^{\prime} \\
\hline v_{2} \\
\vdots \\
v_{1}^{\prime \prime} \\
v_{1}^{\prime \prime} \\
v_{n+1}^{\prime \prime} \\
v_{n}^{\prime \prime \prime}+1
\end{array}\right)=\Omega^{2}\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
\hline v_{2} \\
\vdots \\
v_{1}^{\prime \prime} \\
v_{1 \prime \prime}^{\prime \prime} \\
v_{n+1}^{\prime \prime} \\
v_{n}^{\prime \prime \prime}+1
\end{array}\right)
\end{aligned}
$$

In partitioned form, the previous equations can be written as

$$
\left(\begin{array}{ll}
\mathbf{L}_{a a} & \mathbf{L}_{a b} \tag{17}\\
\mathbf{L}_{b a} & \mathbf{L}_{b b}
\end{array}\right)\binom{\mathbf{w}_{c}}{\mathbf{w}}=\Omega^{2}\binom{\mathbf{0}}{\mathbf{w}},
$$

where \mathbf{w}_{c} is the vector of the passive coordinates,

$$
\mathbf{w}_{c}=\left(\begin{array}{c}
v_{1} \tag{18}\\
v_{1}^{\prime} \\
v_{n+1}^{\prime} \\
v_{n+1}^{\prime}
\end{array}\right],
$$

and \mathbf{w} is the vector of the active co-ordinates,

$$
\mathbf{w}=\left[\begin{array}{c}
v_{2} \tag{19}\\
v_{3} \\
\vdots \\
v_{1}^{\prime \prime} \\
v_{1}^{\prime \prime \prime} \\
v_{n+1}^{\prime \prime} \\
v_{n+1}^{\prime \prime \prime}
\end{array}\right] .
$$

The passive degrees of freedom can be easily condensed, and the following reduced eigenvalue problem is obtained:

$$
\begin{equation*}
\left(\mathbf{L}_{b b}-\mathbf{L}_{b a} \mathbf{L}_{a a}^{-1} \mathbf{L}_{a b}\right) \mathbf{w}=\Omega^{2} \mathbf{w} . \tag{20}
\end{equation*}
$$

It is perhaps worth noting that, in the absence of axial forces and elastic soil, no matrix inversion is involved in the condensation process, because in this case the matrix $\mathbf{L}_{a \alpha}$ is given by an identity matrix.

4. NUMERICAL EXAMPLES

All computations for the numerical examples have been performed by using two different choices of the monomials α_{i}. In the first case $\alpha_{i}=\xi^{i-1}$ and the sampling points are uniformly distributed along the natural interval

$$
\begin{equation*}
\xi_{i}=[2(i-1)-n] / n, \quad i=1,2, \ldots, n+1 . \tag{21}
\end{equation*}
$$

In the second case $\alpha_{i}=T_{i-1}(\xi)$, where $T_{i}(\xi)$ are the Chebyshev polynomials of the first kind, and the sampling points are located at the so-called Gauss-Lobatto-Chebyshev points,

$$
\begin{equation*}
\xi_{i}=-\cos (\pi(i-1) / n), \quad i=1,2, \ldots, n+1 \tag{22}
\end{equation*}
$$

In Table 1 the first three nondimensional natural frequencies of vibration are reported, in the absence of axial loads and elastic soils, for $\chi_{v z}=0, \chi_{r l}=0, \chi_{r r}=0$, and for various values of the non-dimensional vertical flexibility at left χ_{v}. The results have been obtained for $n=8$, and are compared with the exact results, which in this particular case could be obtained by solving the frequency equation [6]. It is worth noting that the use of the Chebyshev polynomials implies a greater precision, especially for the higher frequencies. In any case, the agreement is quite satisfactory.

Table 1
First three non-dimensional frequencies of a beam with flexible ends

$\chi_{v l}$		Ω_{1}	Ω_{2}	Ω_{3}
0	Uniform grid	22.37329	61.67194	120.85757
	Chebyshev grid	22.37329	61.67436	$120 \cdot 82882$
	Exact	22.37329	$61 \cdot 67282$	120.90339
$0 \cdot 001$	Uniform grid	21.38780	$53 \cdot 11998$	91.57713
	Chebyshev grid	21.38780	$53 \cdot 12383$	91.52081
	Exact	21.38780	53.12356	91.51347
$0 \cdot 005$	Uniform grid	17.75903	37.73705	77.64691
	Chebyshev grid	17.75903	37.73758	77.60824
	Exact	17.75901	37.73758	77.60118
$0 \cdot 01$	Uniform grid	14.80957	33.89799	76.09249
	Chebyshev grid	14.80957	33.89823	76.05848
	Exact	14.80957	33.89823	76.05188
$0 \cdot 05$				
	Chebyshev grid	$8 \cdot 884959$	30.90100	74.91615
	Exact	8.884959	$30 \cdot 90100$	74.90992
$0 \cdot 1$	Uniform grid	7.470370	30.55817	$74 \cdot 80982$
	Chebyshev grid	$7 \cdot 470370$	$30 \cdot 55827$	74.77985
	Exact	$7 \cdot 470370$	30.55827	74.77366
1	Uniform grid	$5 \cdot 813812$	$30 \cdot 25851$	74.68802
	Chebyshev grid	$5 \cdot 813812$	$30 \cdot 25860$	$74 \cdot 65844$
	Exact	$5 \cdot 813812$	$30 \cdot 25860$	$74 \cdot 65230$
10	Uniform grid	5.615816	$30 \cdot 22903$	74.67590
	Chebyshev grid	$5 \cdot 615817$	$30 \cdot 22912$	74.64637
	Exact	5.615815	$30 \cdot 22912$	74.64022
100	Uniform grid	5.595576	$30 \cdot 22608$	74.67469
	Chebyshev grid	5.595575	$30 \cdot 22617$	$74 \cdot 64516$
	Exact	5.595575	$30 \cdot 22617$	$74 \cdot 63902$

In Table 2 the influence of the axial force on the free vibration frequency is illustrated for a beam clamped at the left and simply supported at the right with a flexible support ($\chi_{v l}=0 \cdot 5$). Even in this case $n=8$, whereas the support at the right is simulated by giving the large value $\chi_{r r}=100000$ as the right rotational flexibility.

Table 2
Free vibration frequencies versus axial load for a propped cantilever beam with a flexible support

λ	Ω_{1}, uniform grid	Ω_{1}, exact
0	4.49483	4.49482
1	3.96342	3.96342
2	3.30980	3.30980
3	2.42482	2.42482
4	0.63363	0.63364
4.05	0.33936	0.33937
4.07	0.01667	0.01680
4.070047	0.00279	0.00347

The performances of the differential quadrature method are not influenced by the value of the axial loads, which can reach its critical value without causing any numerical error.

5. CONCLUSIONS

The differential quadrature method has been applied to a class of one-dimensional boundary problems in the presence of non-classical boundary conditions. It is shown that the proposed approach satisfies exactly all the four boundary conditions, leading to a simple eigenvalue problem.

A small Mathematica notebook [7] was written, in order to compare the appropriate eigenvalues with the exact results, and some effort was made in order to minimize the round-off errors. Finally, numerical examples and comparisons show the effectiveness of the proposed method.

REFERENCES

1. C. W. Bert and M. Malik 1996 Transactions of the American Society of Mechanical Engineers, Applied Mechanics Reviews, 49(1), 1-28. Differential quadrature method in computational mechanics: A review.
2. W. Chen, A. G. Striz and C. W. Bert 1997 International Journal for Numerical Methods in Engineering 40, 1941-1956. A new approach to the differential quadrature method for fourth-order equations.
3. M. A. De Rosa and C. Franciosi Natural boundary conditions and DQM, to be published.
4. C. Shu and H. Du 1997 International Journal of Solids and Structures 34(7), 819-835. Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates.
5. C. Shu and H. Du 1997 International Journal of Solids and Structures 34(7), 837-846. A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates.
6. M. A. De Rosa, M. J. Maurizi and M. B. Rosales 1998 Sectam XIX, Florida Atlantic University, 3-5 May. The dynamic behaviour of a pile on Pasternak soil subjected to tip axial loads.
7. S. Wolfram 1991 Mathematica: A System for Doing Mathematics by Computer. Reading, Massachusetts, Addison-Wesley; second edition.
